• Главная
  • rss-лента сайта solo-project.com


Косинус фи, тангенс фи

Передача электрической энергии неизбежно сопровождается потерями. Часть мощности рассеивается при прохождении тока по линии электропередач, проводам и кабелям: любой провод имеет ненулевое активное сопротивление. Часть электрической мощности, пришедшая к потребителю, используется для совершения полезной работы и тепловое рассеяние на нагрузке у потребителя. Но не вся дошедшая до потребителя мощность к нему попадает.  В чем причина, и куда девается остальная электроэнергия?отображение на экране

Причина нерационального использования электроэнергии – характер сопротивления нагрузки. Электрические цепи характеризуются сопротивлением переменному току, и это сопротивление имеет активную и реактивную составляющую. На активном сопротивлении электрическая мощность рассеивается, реактивное сопротивление не рассеивает мощность, но создает фазовый сдвиг между переменным напряжением и током.

В идеале фазовый такой сдвиг должен быть нулевым, тогда использование энергии потребителем максимальное. Но на практике ток несколько отстает от напряжения или опережает его, в зависимости от того, носит ли сопротивление нагрузки емкостной или индуктивный характер.

Почему фазовый сдвиг приводит к потерям электроэнергии?

Если активное сопротивление проводника просто рассеивает электроэнергию, переводя ее в тепловую, то фазовый сдвиг между током и напряжением приводит к повышенному расходу энергии на электростанции.

Процесс, происходящий при подаче переменного тока на нагрузку с реактивной составляющей, можно представить, как частичное отражение электрической волны от нагрузки, возвращение ее в электросеть. Такая отраженная мощность в итоге рассеивается на активном сопротивлении проводов.

Эффективность энергопотребления зависит от соотношения между активной и реактивной составляющими полного сопротивления нагрузки.

Треугольник сопротивлений и электрические потери

Соотношения между активным, реактивным и полным сопротивлениями нагрузки можно наглядно представить в виде треугольника сопротивлений.

треугольник сопротивлений и угол фи
 

Мерой реактивного сопротивления является косинус φ, то есть косинус угловой меры фазового сдвига между напряжением и током. Чем больше реактивная составляющая, тем активнее нагрузка «сопротивляется» подаче переменного тока.

Коэффициент мощности и cos(φ)

Отношение активной мощности, потребляемой в нагрузке, и полной мощности, подаваемой на нагрузку по линии электропередач, численно равно cos(φ), где φ – угол фазового сдвига между током и напряжением. Это отношение называется коэффициентом мощности, используется также термин косинус фи.

Коэффициент мощности, теоретически, может меняться от нуля до 1. Это соответствует использованию в нагрузке от 0% поступающей электроэнергии до 100%. При этом стопроцентное потребление мощности соответствует чисто активной нагрузке, φ=0,  cos(φ)=1. С другой стороны, 0% - крайне нежелательный вариант, когда φ=π/2, cos(φ)=0, при этом вся подаваемая мощность переменного тока отражается от реактивной нагрузки и рассеивается в подводящих проводах. На практике коэффициент мощности имеет промежуточное значение; например, φ= π/2, cos(φ)=0,701.

Какой косинус лучше?

Качество электрической нагрузки можно повысить, если скомпенсировать реактивность. Значения косинуса φ оцениваются следующим образом:

  • 0.9…1 – отлично
  • 0.7…0.9 – хорошо
  • 0.5…0,7 – допустимо
  • Менее 0,5 – плохо

Тангенс фи – характеристика потерь

Рассмотрев треугольник сопротивлений, можно понять смысл термина «тангенс фи». Это отношение между реактивной и активной составляющими нагрузки. При возрастании доли реактивной составляющей тангенс возрастает, в пределе стремясь к бесконечности. Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).


Логические элементы являются устройствами, призванными обрабатывать информацию в цифровой форме.

читать далее

Нередко возникает вопрос ток, с какими характеристиками необходим для обеспечения полноценной работы электроприборов? Какую мощность должна иметь электросеть, чтобы тот или иной прибор работал?

читать далее

Любую электромагнитную волну можно представить в виде обычной волны, возникающей на воде при броске камня. Исходя из этого выделяют два основных параметра:

читать далее