• Главная
  • rss-лента сайта solo-project.com


Основные характеристики АЦП

Основные характеристики АЦП
Любой АЦП является сложным электронным устройством, которое может быть выполнено в виде одной интегральной микросхемы или содержать большое количество различных электронных компонентов. В связи с этим характеристики АЦП зависят не только от его построения, но и от характеристик элементов, которые входят в его состав. Тем не менее большинство АЦП оценивают по их основным метрологическим показателям, которые можно разделить на две группы: статические и динамические.

К статическим характеристикам АЦП относят: абсолютные значения и полярности входных сигналов, входное сопротивление, значения и полярности выходных сигналов, выходное сопротивление, значения напряжений и токов источников питания, количество двоичных или десятичных разрядов выходного кода, погрешности преобразования постоянного напряжения и др. К динамическим параметрам АЦП относят: время преобразования, максимальную частоту дискретизации, апертурное время, динамическую погрешность и др.

Рассмотрим некоторые из этих параметров более подробно. Основной характеристикой АЦП является его разрешающая способность, которую принято определять величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Разрешающую способность можно выражать в процентах, в количестве разрядов или в относительных единицах. Например, 10-разрядный АЦП имеет разрешающую способность (1024)^ = 10~3 = 0,1 %. Если напряжение шкалы для такого АЦП равно 10 В, то абсолютное значение разрешающей способности будет около 10 мВ.

Реальное значение разрешающей способности отличается от расчетного из-за погрешностей АЦП. Точность АЦП определяется значениями абсолютной погрешности, дифференциальной и интегральной нелинейности. Абсолютную погрешность АЦП определяют в конечной точке характеристики преобразования, поэтому ее обычно называют погрешностью полной шкалы и измеряют в единицах младшего разряда.

Дифференциальную нелинейность (DNL) определяют через идентичность двух соседних приращений сигнала, т. е. как разность напряжений двух соседних квантов: DNL = hi – hi+1. Определение дифференциальной нелинейности показано на рис. 76, а.

Интегральная нелинейность АЦП (INL) характеризует идентичность приращений во всем диапазоне входного сигнала. Обычно ее определяют, как показано на рис. 76, б, по максимальному отклонению сглаженной характеристики преобразования от идеальной прямой линии, т. е. INL = u'i-ui.

Время преобразования Тпр обычно определяют как интервал времени от начала преобразования до появления на выходе АЦП устойчивого кода входного сигнала. Для одних типов АЦП это время постоянное и не зависит от значения входного сигнала, для других АЦП это время зависит от значения входного сигнала. Если АЦП работает без устройства выборки и хранения, то время преобразования является апертурным временем.

Максимальная частота дискретизации – его частота, с которой возможно преобразование входного сигнала, при условии, что выбранный параметр (например, абсолютная погрешность) не выходит за заданные пределы.


Рис. 76. Определение дифференциальной нелинейности (а)
и интегральной нелинейности (б)

Иногда максимальную частоту преобразования принимают равной обратной величине времени преобразования. Однако это пригодно не для всех типов АЦП.

Собственные концентрации носителей заряда

Для количественной оценки электропроводности необходимо знать полное число электронов в зоне проводимости, т. е. их концентрацию...

читать далее

Основное назначение выпрямительных диодов

Основное назначение выпрямительных диодов – преобразование переменного напряжения в постоянное в блоках питания...

читать далее

Фотоэффект

В настоящее время на основе внутреннего фотоэффекта разработано большое количество полупроводниковых фотоприборов...

читать далее