• Главная
  • rss-лента сайта solo-project.com

Уровень ферми

Еще раз о том, как электроны, нарушая порядок, все же его сохраняют. Понятие вероятности, о котором пойдет речь, требует определенной логики мышления, к которой надо привыкнуть. Поэтому не старайтесь во что бы то ни стало понять изложенное сразу. Вы можете вернуться к нему позднее.

Перейдем к сути дела. Мы познакомились с понятием динамического равновесия, узнали закон распределения Больцмана и можем сказать, что при данной температуре в заданном интервале вблизи некоторого уровня энергии находится в среднем определенное число электронов. Обозначим его, например, буквой 7. Остановимся теперь еще раз на смысле слов «в среднем». Для уточнения смысла этих слов проделаем следующий опыт. Возьмем коробку с крышкой такую, чтобы в ней могло свободно поместиться 20 шаров, различающихся только цветом. Пусть 10 шаров выкрашены в белый цвет, а остальные 10 — в черный. Положим шары в коробку, закроем ее и встряхнем несколько раз так, чтобы шары внутри коробки, перекатываясь, хорошо перемешались. Затем поставим коробку на стол и откроем крышку. Посчитаем, сколько белых (или черных) шаров оказалось в левой и правой половинах коробки. Повторяя этот опыт много раз, можно убедиться в том, что чаще всего реализуется ситуация, при которой число шаров одного цвета в левой и правой частях коробки одинаково, как это показано на рисунке 37. Реже будет встречаться результат: 6 белых шаров слева и 4 белых шара справа или наоборот; еще реже ситуация 7 белых слева, 3 — справа, еще реже 8 белых слева, 2 — справа, очень редко 9 белых слева, 1 — справа и совсем редко — все белые шары в одной из частей коробки.


Уровень ферми, статьи для начинающих


Этот опыт поясняет понятие вероятности распределения шаров разных цветов в объеме коробки. Если шары одинаковы и при встряхивании коробки хорошо перемешиваются, то наиболее вероятной оказывается ситуация, при которой число шаров одного цвета в разных частях коробки одинаково. Это значит, что слова «наиболее вероятная» имеют смысл: «реализуется чаще всех других возможных вариантов». В проделанном опыте результат обусловлен тем, что нахождение какого-либо шара в той или другой части коробки равновероятно.

Вернемся теперь к вопросу о размещении электронов по энергетическим уровням, которое осуществляется в среднем по закону распределения Больцмана. Мы можем пояснить теперь, что в слова «в среднем» здесь также вкладывается смысл: распределение по Больцману реализуется чаще всего, оно наиболее вероятно и отклонения от него встречаются тем реже, чем больше эти отклонения. Это значит, что названное выше число электронов на определенном энергетическом уровне не остается строго фиксированным и равным N, а что при подсчете этого числа мы чаще всего получим результат, равный N. Это наиболее вероятное число электронов на определенном энергетическом уровне, соответствующее распределению Больцмана при заданной температуре.

Итак, мы ввели понятие вероятности. Рассмотрим в качестве примера, поясняющего физический смысл этого понятия, еще раз задачу о распределении электронов по уровням энергетических зон беспримесного (чистого, собственного) полупроводника. На рисунке 38 воспроизведена диаграмма энергетических уровней для такого полупроводника. Она составлена для комнатной температуры, при которой лишь небольшая часть электронов способна преодолеть запрещенную зону. Поэтому на диаграмме показано относительно мало электронов в зоне проводимости. Мы недаром употребили термин «относительно мало». Физики никогда не бывают удовлетворены словом «мало» или «много, а всегда спрашивают, «по сравнению с чем мало или много?». Действительно, по сравнению с Солнцем Земля ничтожно мала, а по сравнению с футбольным мячом она огромна. Можно ли считать Землю большой или малой, зависит от условия решаемой задачи, например движения Земли как планеты вокруг Солнца, либо падения на Землю футбольного мяча.


Уровень ферми, статьи для начинающих


Чему же соответствует малое число свободных электронов в зоне проводимости германия при комнатной температуре? Эту цифру мы уже называли. Она равна 2,5 *10 13-ой электронов в 1 см3 и мала по сравнению с 4,5-1017 электронами в 1 см3 германия с примесью фосфора при аналогичных условиях. Названные цифры еще раз показывают, что изображенная нами диаграмма энергетических уровней весьма условна. Строго говоря, мы должны были бы изобразить на этой диаграмме по крайней мере1013-ой уровней в валентной зоне, так как на каждом уровне размещается не более двух электронов (принцип Паули!).

На самом деле число уровней определяется числом атомов, составляющих кристаллическую решетку германия, и обычно еще во много раз превышает 2,5*10 в 13-ой. А это значит, что, выбрав небольшой интервал энергий вблизи зоны проводимости, мы обнаружим, что электронами заполнена лишь часть энергетических уровней, входивших в этот интервал.

Как же оценить, какая часть энергетических уровней в среднем заполняется? Вот для этой оценки и вводится понятие вероятности нахождения электронов на уровнях энергии. Если в среднем при динамическом равновесии из десяти соседних уровней заполнено лишь 2, то говорят, что вероятность нахождения электронов на этих уровнях равна при данных условиях 2/10=0,2, или 20%.

В соответствии с понятием вероятности приведенное число означает, что, регистрируя большое число раз ситуацию заполнения рассматриваемых десяти уровней, мы чаще всего получим результат: 2 уровня из 10 заполнено.

Как же меняется вероятность заселения уровней энергии электронами чистого германия? Рассмотрим энергетическую диаграмму чистого германия (рис. 39). Для оценки вероятности выберем по 10 энергетических уровней в разных частях диаграммы, показанных на рисунке: I — в глубине валентной зоны, II — вблизи потолка валентной зоны, III — вблизи дна зоны проводимости, IV — высоко в зоне проводимости.


Уровень ферми, статьи для начинающих


На 10 уровнях может разместиться 20 электронов. В соответствии с показанным на рисунке заполнением уровней при динамическом равновесии для заданной температуры вероятности заполнения уровней равны соответственно 0,95; 0,6; 0,4 и 0,05.

При увеличении температуры, как уже было показано, заселенность более высоких уровней будет расти и поэтому вероятности заполнения уровней валентной зоны будут падать, а уровней зоны проводимости увеличиваться.

В теории полупроводников важно знать, где расположен уровень энергии, вероятность заполнения которого электронами равна 0,5. Этот уровень получил специальное наименование и называется уровнем Ферми, по имени известного итальянского физика. Где же расположен уровень Ферми беспримесного полупроводника (па-пример, чистого германия)? Вспомним, что в таком полупроводнике число электронов в зоне проводимости точно равно числу дырок в валентной зоне. Зная это, нетрудно сообразить, что вероятность заполнения симметрично расположенных относительно запрещенной зоны уровней энергии в зоне проводимости и валентной зоне в сумме равна единице. (В нашем примере это 0,4+0,6=1.) А это значит, что уровень Ферми, вероятность заполнения которого равна 0,5, должен располагаться в середине запрещенной зоны, как это показано на рисунке 40, где уровень Ферми обозначен через EF. У читателя возникает законный вопрос. Вероятность заполнения уровня Ферми равна 0,5, но он лежит внутри запрещенной зоны. Значит, на этом уровне электроны находиться не могут. Это совершенно верно. Объяснить, почему это так, может лишь квантовая физика. Мы же должны здесь толковать смысл уровня Ферми следующим образом: «Если бы внутри запрещенной зоны в месте расположения уровня Ферми имелись разрешенные энергетические уровни, то они заполнялись бы с вероятностью, равной 0,5».


Уровень ферми, статьи для начинающих


Остановимся теперь на таком весьма важном вопросе: где расположен уровень Ферми в примесных полупроводниках n- и р-типов?

Начнем с полупроводника n-типа. Введение донорной примеси (например, фосфора в германии), как мы уже установили, сильно увеличивает число электронов в зоне проводимости, не меняя при этом числа дырок в валентной зоне. Это значит, что вероятность заполнения уровней зоны проводимости должна расти и, следовательно, уровень Ферми должен сместиться вверх от середины запрещенной зоны ко «дну» зоны проводимости.

Аналогичные рассуждения позволяют утверждать, что в полупроводнике р-типа уровень Ферми должен сместиться от середины запрещенной зоны вниз к «потолку» валентной зоны.




Похожие записи

Свет управляет электрическим сопротивлением. Как мы только что установили, для перехода электронов из валентной зоны в зону проводимости необходима энергия.

читать далее

Вернемся сначала к вопросу: как можно управлять проводимостью полупроводника? Да, мы уже говорили о том, что для этих целей можно ввести в кристаллическую решетку полупроводника атомы примеси...

читать далее

Первым прибором, на котором мы остановимся, будет терморезистор — прибор, изменяющий свою проводимость под действием нагревания или охлаждения.

читать далее